Part Number Hot Search : 
0LZBC01 150IV LZ30B 0022122 1N4736 MTD8000P IRFS250B P2600
Product Description
Full Text Search
 

To Download ADA4062-2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Tiny, Low Power JFET-Input Op Amp ADA4062-2
FEATURES
Low input bias current: 50 pA maximum Offset voltage 1.5 mV maximum for ADA4062-2 B grade 2.5 mV maximum for ADA4062-2 A grade Offset voltage drift: 4 V/C typical Slew rate: 3.3 V/s typical CMRR: 90 dB typical Low supply current: 165 A typical High input impedance Unity-gain stable Packaging: SOIC, MSOP
PIN CONFIGURATIONS
OUT A 1 -IN A 2 +IN A 3 V- 4
ADA4062-2
TOP VIEW (Not to Scale)
8 7 6 5
V+ OUT B +IN B
07670-001
07670-002
-IN B
Figure 1. 8-Lead Narrow-Body SOIC
OUT A 1 -IN A 2 +IN A 3 V- 4 V+ OUT B -IN B +IN B
8
ADA4062-2
TOP VIEW (Not to Scale)
7 6 5
Figure 2. 8-Lead MSOP
APPLICATIONS
Power control and monitoring Active filters Industrial/process control Body probe electronics Data acquisition Integrators Input buffering
GENERAL DESCRIPTION
The ADA4062-2 is a dual JFET-input amplifier with industryleading performance. It offers lower power, offset voltage, drift and ultralow bias current. The ADA4062-2 B grade features typical low offset voltage of 0.5 mV, offset drift of 4 V/C, and bias current of 2 pA. The ADA4062-2 is ideal for various applications, including process control, industrial and instrumentation equipment, active filtering, data conversion, buffering, and power control and monitoring. With a low supply current of 165 A per amplifier, it is also very well suited for lower power applications. The ADA4062-2 is specified for the extended industrial temperature range of -40C to +125C and is available in lead-free SOIC and MSOP packages.
Table 1. Low Power Op Amps
Supply Single Dual 40 V OP97 OP297 36 V AD820 OP282 AD8682 AD822 OP482 AD8684 AD824 12 V to 16 V AD8641 AD8663 AD8642 AD8667 AD8643 AD8669 5V AD8541 AD8542
Quad
OP497
AD8544
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 (c)2008 Analog Devices, Inc. All rights reserved.
ADA4062-2 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications ....................................................................................... 1 Pin Configurations ........................................................................... 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Electrical Characteristics ............................................................. 3 Absolute Maximum Ratings............................................................ 4 Thermal Resistance ...................................................................... 4 Power Sequencing ........................................................................ 4 ESD Caution...................................................................................4 Typical Performance Characteristics ..............................................5 Applications Information .............................................................. 14 Notch Filter ................................................................................. 14 High-Side Signal Conditioning ................................................ 14 Micropower Instrumentation Amplifier ................................. 14 Phase Reversal ............................................................................ 14 Schematic ......................................................................................... 16 Outline Dimensions ....................................................................... 17 Ordering Guide .......................................................................... 18
REVISION HISTORY
10/08--Revision 0: Initial Version
Rev. 0 | Page 2 of 20
ADA4062-2 SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VSY = 15 V, VCM = 0 V, TA = 25C, unless otherwise noted. Table 2.
Parameter INPUT CHARACTERISTICS Offset Voltage B Grade A Grade -40C TA +125C Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio B Grade A Grade Large-Signal Voltage Gain Offset Voltage Drift Input Resistance Input Capacitance, Differential Mode Input Capacitance, Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio B Grade A Grade Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin Channel Separation NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density ISY AVO VOS/T RIN CINDM CINCM VOH VOL ISC ZOUT PSRR VSY = 4 V to 18 V -40C TA +125C VSY = 4 V to 18 V -40C TA +125C IO = 0 mA -40C TA +125C RL = 10 k, CL = 100 pF, AV = 1 To 0.01%, VIN = 2 V step, CL = 100 pF, RL = 5 k, AV = 1 RL = 10 k, AV = 1 RL = 10 k, AV = 1 f = 10 kHz f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz
Rev. 0 | Page 3 of 20
Symbol VOS
Conditions
Min
Typ
Max
Unit
0.5 -40C TA +125C 0.75 IB -40C TA +125C IOS -40C TA +125C -40C TA +125C CMRR VCM = -11.5 V to +11.5 V -40C TA +125C VCM = -11.5 V to +11.5 V -40C TA +125C RL = 10 k, VO = -10 V to +10 V -40C TA +125C -40C TA +125C 80 80 74 70 76 72 90 90 83 4 10 1.5 4.8 13 12.5 13.5 -13.8 20 4 -11.5 0.5 2
1.5 3 2.5 5 50 5 25 2.5 +15
mV mV mV mV pA nA pA nA V dB dB dB dB dB dB V/C T pF pF V V V V mA
RL = 10 k to VCM -40C TA +125C RL = 10 k to VCM -40C TA +125C f = 100 kHz, AV = 1
-13 -12.5
80 80 74 70
90 90 165 200 220
dB dB dB dB A A V/s s MHz Degrees dB V p-p nV/Hz fA/Hz
SR tS GBP M CS en p-p en in
3.3 3.5 1.4 80 130 1.5 36 5
ADA4062-2 ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Supply Voltage Input Voltage Differential Input Voltage Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) Rating 18 V VSY VSY Indefinite -65C to +150C -40C to +125C -65C to +150C 300C
THERMAL RESISTANCE
JA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. It was measured using a standard 2-layer board. Table 4. Thermal Resistance
Package Type 8-Lead SOIC 8-Lead MSOP JA 158 210 JC 43 45 Unit C/W C/W
POWER SEQUENCING
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The op amp supply voltages must be established simultaneously with, or before, any input signals are applied. If this is not possible, the input current must be limited to 10 mA.
ESD CAUTION
Rev. 0 | Page 4 of 20
ADA4062-2 TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25C, unless otherwise noted.
280 240 VSY = 15V VCM = 0V 70 60
NUMBER OF AMPLIFERS
VSY = 5V VCM = 0V
NUMBER OF AMPLIFERS
200 160 120 80 40 0
50 40 30 20 10 0
07670-003
-3
-2
-1
0 VOS (mV)
1
2
3
-4
-3
-2
-1
0 VOS (mV)
1
2
3
4
Figure 3. Input Offset Voltage Distribution
Figure 6. Input Offset Voltage Distribution
40
VSY = 15V -40C TA +125C
40
VSY = 5V -40C TA +125C
NUMBER OF AMPLIFERS
20
NUMBER OF AMPLIFERS
30
30
20
10
10
-2
0
2
4 TCVOS (V/C)
6
8
10
TCVOS (V/C)
Figure 4. Input Offset Voltage Drift Distribution
Figure 7. Input Offset Voltage Drift Distribution
5 4 3 2
VSY = 15V
5 4 3 2
VSY = 5V
VOS (mV)
0 -1 -2 -3 -4
07670-006
VOS (mV)
1
1 0 -1 -2 -3 -4
-12
-9
-6
-3
0 VCM (V)
3
6
9
12
15
-3
-2
-1
0
1
2
3
4
5
VCM (V)
Figure 5. Input Offset Voltage vs. Common-Mode Voltage
Figure 8. Input Offset Voltage vs. Common-Mode Voltage
Rev. 0 | Page 5 of 20
07670-056
-5 -15
-5 -4
07670-055
-2
0
2
4
6
8
10
07670-005
0
0
07670-054
ADA4062-2
10000 VSY = 15V 10000 VSY = 5V
1000
1000
100
100
IB (pA)
10
IB (pA)
10 1 1
07670-009
-25
0
25
50
75
100
125
-25
0
25
50
75
100
125
TEMPERATURE (C)
TEMPERATURE (C)
Figure 9. Input Bias Current vs. Temperature
Figure 12. Input Bias Current vs. Temperature
5
VSY = 15V
3
VSY = 5V
4
2
3
IB (pA) IB (pA)
1
2
0
1
-1
07670-010
-8
-6
-4
-2
0
2
4
6
8
10
12
14
16
-2
-1
0
1 VCM (V)
2
3
4
5
VCM (V)
Figure 10. Input Bias Current vs. Input Common-Mode Voltage
Figure 13. Input Bias Current vs. Input Common-Mode Voltage
10
VSY = 15V
10
VSY = 5V
OUTPUT VOLTAGE TO SUPPLY RAIL (V)
VCC - VOH 1
OUTPUT VOLTAGE TO SUPPLY RAIL (V)
VCC - VOH 1
VOL - VEE
VOL - VEE
07670-011
0.1
1 LOAD CURRENT (mA)
10
100
0.1
1 LOAD CURRENT (mA)
10
100
Figure 11. Output Voltage to Supply Rail vs. Load Current
Figure 14. Output Voltage to Supply Rail vs. Load Current
Rev. 0 | Page 6 of 20
07670-014
0.1 0.01
0.1 0.01
07670-013
0 -12 -10
-2 -3
07670-012
0.1 -50
0.1 -50
ADA4062-2
2.0
OUTPUT VOTLAGE TO SUPPLY RAIL (V)
VCC - VOH
1.5
OUTPUT VOTLAGE TO SUPPLY RAIL (V)
VSY = 15V RL = 10k
2.0
VSY = 5V RL = 10k
1.5
VCC - VOH
VOL - VEE
1.0
1.0
VOL - VEE
0.5
0.5
-25
0
25
50
75
100
125
07670-015
-25
0
25
50
75
100
125
TEMPERATURE (C)
TEMPERATURE (C)
Figure 15. Output Voltage to Supply Rail vs. Temperature
Figure 18. Output Voltage to Supply Rail vs. Temperature
120 100 80 60 PHASE
VSY = 15V
120 100 80 60 40
120 100 80 60 PHASE (Degrees)
GAIN (dB)
VSY = 5V PHASE
120 100 80 60 40 20 0 -20 -40
07670-019 07670-020
40 20 0 -20 -40 -60 1k 10k 100k 1M 10M GAIN
40 20 0 -20 -40
GAIN
20 0 -20 -40
07670-016
-60 100M
-60 1k
10k
100k
1M
10M
-60 100M
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 16. Open-Loop Gain and Phase vs. Frequency
Figure 19. Open-Loop Gain and Phase vs. Frequency
50 AV = +100 40 30
50
VSY = 15V
40 30
GAIN (dB)
AV = +100
VSY = 5V
AV = +10
GAIN (dB)
AV = +10 20 10 0 -10 -20 10 AV = +1
20 10 0 -10 -20 10 AV = +1
07670-017
100
1k
10k
100k
1M
10M
100M
100
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 17. Closed-Loop Gain vs. Frequency
Figure 20. Closed-Loop Gain vs. Frequency
Rev. 0 | Page 7 of 20
PHASE (Degrees)
GAIN (dB)
07670-018
0 -50
0 -50
ADA4062-2
1000 VSY = 15V
1000 VSY = 5V
100 AV = +100
100
ZOUT ()
ZOUT ()
10
AV = +10
10
AV = +100 AV = +10 AV = +1
1
AV = +1
1
1k
10k
100k
1M
10M
1k
10k
100k
1M
10M
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 21. Output Impedance vs. Frequency
Figure 24. Output Impedance vs. Frequency
100 90 80 70
CMRR (dB)
VSY = 15V
100 90 80 70
VSY = 5V
50 40 30 20 10 1k 10k 100k 1M 10M
07670-022
CMRR (dB)
60
60 50 40 30 20 10 1k 10k 100k 1M 10M
07670-025 07670-026
0 100
0 100
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 22. CMRR vs. Frequency
Figure 25. CMRR vs. Frequency
140 120 100 80
VSY = 15V
120 100 80
VSY = 5V
PSRR (dB)
PSRR (dB)
60 PSRR+ 40 20 0 -20 PSRR-
60 40 20 0 PSRR-
PSRR+
07670-023
-20
10
100
1k
10k
100k
1M
10M
10
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 23. PSRR vs. Frequency
Figure 26. PSRR vs. Frequency
Rev. 0 | Page 8 of 20
07670-024
07670-021
0.1 100
0.1 100
ADA4062-2
60 VSY = 15V AV = +1 RL = 10k
60
50
50
VSY = 5V AV = +1 RL = 10k
OVERSHOOT (%)
OVERSHOOT (%)
40
40
30
30
20
20
10
10
07670-027
100 CL (pF)
1000
10000
100 CL (pF)
1000
10000
Figure 27. Small-Signal Overshoot vs. Load Capacitance
Figure 30. Small-Signal Overshoot vs. Load Capacitance
VOLTAGE (5V/DIV)
VOLTAGE (1V/DIV)
VSY = 15V VIN = 20V p-p AV = +1 RL = 10k CL = 100pF
VSY = 5V VIN = 4V p-p AV = +1 RL = 10k CL = 100pF
07670-028
TIME (10s/DIV)
TIME (4s/DIV)
Figure 28. Large-Signal Transient Response
Figure 31. Large-Signal Transient Response
VOLTAGE (20mV/DIV)
VOLTAGE (20mV/DIV)
VSY = 15V VIN = 100mV p-p AV = +1 RL = 10k CL = 100pF
VSY = 5V VIN = 100mV p-p AV = +1 RL = 10k CL = 100pF
07670-029
TIME (10s/DIV)
TIME (10s/DIV)
Figure 29. Small-Signal Transient Response
Figure 32. Small-Signal Transient Response
Rev. 0 | Page 9 of 20
07670-032
07670-031
07670-030
0 10
0 10
ADA4062-2
4 2 0
INPUT VOLTAGE (V)
VSY = 15V INPUT
4 VSY = 5V 2 INPUT 0
OUTPUT VOLTAGE (V)
OUTPUT
0 -5 -10 -15
OUTPUT
0 -2 -4
OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V)
07670-035 07670-037 07670-036
TIME (2s/DIV)
07670-033
-20
INPUT VOLTAGE (V)
TIME (2s/DIV)
-6
Figure 33. Negative Overload Recovery
Figure 36. Negative Overload Recovery
2 0 -2 INPUT
VSY = 15V
2 0 -2
INPUT
VSY = 5V
OUTPUT VOLTAGE (V)
INPUT VOLTAGE (V)
15 10 5 OUTPUT 0 -5
INPUT VOLTAGE (V)
4 2
OUTPUT
0 -2
TIME (2s/DIV)
07670-034
TIME (2s/DIV)
Figure 34. Positive Overload Recovery
Figure 37. Positive Overload Recovery
INPUT
VSY = 15V
IDEAL STEP FUNCTION OF 10V
INPUT
VSY = 5V
VOLTAGE (5V/DIV)
VOLTAGE (1V/DIV)
+10mV ERROR BAND OUTPUT 0V -10mV
+2mV OUTPUT 0V ERROR BAND -2mV
07670-042
TIME (1s/DIV)
TIME (2s/DIV)
Figure 35. Positive Settling Time to 0.01%
Figure 38. Positive Settling Time to 0.01%
Rev. 0 | Page 10 of 20
ADA4062-2
VSY = 15V
VSY = 5V
VOLTAGE (5V/DIV)
VOLTAGE (1V/DIV)
INPUT
INPUT
+10mV ERROR BAND OUTPUT 0V -10mV
+2mV ERROR BAND OUTPUT 0V -2mV
07670-038
TIME (1s/DIV)
TIME (2s/DIV)
Figure 39. Negative Settling Time to 0.01%
Figure 42. Negative Settling Time to 0.01%
1000
VSY = 15V
VOLTAGE NOISE DENSITY (nV/Hz)
1000
VSY = 5V
VOLTAGE NOISE DENSITY (nV/Hz)
100
100
07670-040
1
10
100
1k
10k
100k
1
10
100
1k
10k
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 40. Voltage Noise Density
Figure 43. Voltage Noise Density
VSY = 15V INPUT NOISE VOLTAGE (0.5V/DIV) INPUT NOISE VOLTAGE (0.5V/DIV)
VSY = 5V
07670-041
TIME (1s/DIV)
TIME (1s/DIV)
Figure 41. 0.1 Hz to 10 Hz Noise
Figure 44. 0.1 Hz to 10 Hz Noise
Rev. 0 | Page 11 of 20
07670-044
07670-043
10
10
07670-039
ADA4062-2
410 410 390 125C SUPPLY CURRENT (A) 370 VSY = 15V 350 VSY = 5V 330 310 290 270 -50
390
SUPPLY CURRENT (A)
370 85C 350 25C 330
310
-40C
07670-045
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 SUPPLY VOLTAGE (V)
-25
0
25
50
75
100
125
TEMPERATURE (C)
Figure 45. Supply Current vs. Supply Voltage
Figure 48. Supply Current vs. Temperature
0 -20 CHANNEL SEPARATION (dB) -40 -60 -80 -100 -120 -140
07670-046
VSY = 15V VIN = 10V p-p RL = 10k
0 -20 CHANNEL SEPARATION (dB) -40 -60 -80 -100 -120 -140
VSY = 5V VIN = 5V p-p RL = 10k
1k FREQUENCY (Hz)
10k
100k
100
1k FREQUENCY (Hz)
10k
100k
Figure 46. Channel Separation vs. Frequency
Figure 49. Channel Separation vs. Frequency
100
VSY = 15V f = 1kHz RL = 10k
100
VSY = 5V f = 1kHz RL = 10k
10
10
THD + N (%)
0.1
THD + N (%)
1
1
0.1
0.01
0.01
07670-047
0.01
0.1 AMPLITUDE (V rms)
1
10
0.01
0.1 AMPLITUDE (V rms)
1
10
Figure 47. THD + N vs. Amplitude
Figure 50. THD + N vs. Amplitude
Rev. 0 | Page 12 of 20
07670-050
0.001 0.001
0.001 0.001
07670-049
-160 100
-160
07670-048
290
ADA4062-2
10 VSY = 15V VIN = 0.5 V rms RL = 10k
10 VSY = 5V VIN = 0.5 V rms RL = 10k
1
1
THD + N (%)
0.01
THD + N (%)
07670-051
0.1
0.1
0.01
0.001
0.001
10
100
1k FREQUENCY (Hz)
10k
100k
10
100
1k FREQUENCY (Hz)
10k
100k
Figure 51. THD + N vs. Frequency
Figure 52. THD + N vs. Frequency
Rev. 0 | Page 13 of 20
07670-052
0.0001
0.0001
ADA4062-2 APPLICATIONS INFORMATION
NOTCH FILTER
A notch filter rejects a specific interfering frequency and can be implemented using a single op amp. Figure 53 shows a 60 Hz notch filter that uses the twin T network with the ADA4062-2 configured as a voltage follower. The ADA4062-2 works as a buffer that provides high input resistance and low output impedance. The low bias current (2 pA typical) and high input resistance (10 T typical) of the ADA4062-2 enable large resistors and small capacitors to be used. Alternatively, different combinations of resistors and capacitors values can be used to achieve the desired notch frequency. However, the major drawback to this circuit topology is the need to ensure that all the resistors and capacitors be closely matched. If they are not closely matched, the notch frequency offset and drift cause the circuit to attenuate at a frequency other than the ideal notch frequency. Therefore, to achieve the desired performance, 1% or better component tolerances are usually required. In addition, a notch filter requires an op amp with a bandwidth of at least 100 to 200 times the center frequency. Hence, using the ADA4062-2 with a bandwidth of 1.4 MHz is excellent for a 60 Hz notch filter. Figure 54 shows the gain of the notch filter with respect to frequency. At 60 Hz, the notch filter has about 50 dB attenuation of signal.
+VSY
HIGH-SIDE SIGNAL CONDITIONING
There are many applications that require the sensing of signals near the positive rail. The ADA4062-2 can be used in high-side current sensing applications. Figure 55 shows a high-side signal conditioning circuit using the ADA4062-2. The ADA4062-2 has an input common-mode range that includes the positive supply (-11.5 V VCM +15 V). In the circuit, the voltage drop across a low value resistor, such as the 0.1 shown in Figure 55, is amplified by a factor of 5 using the ADA4062-2.
+15V 0.1 500k 100k 100k 500k +15V 1/2 -15V VO
07670-058
RL
ADA4062-2
Figure 55. High-Side Signal Conditioning
MICROPOWER INSTRUMENTATION AMPLIFIER
The ADA4062-2 is a dual amplifier and is perfectly suited for applications that require lower supply currents. For supply voltages of 15 V, the supply current per amplifier is 165 A typical. The ADA4062-2 also offers a typical low offset voltage drift of 4 V/C and a very low bias current of 2 pA, which makes it well suited for instrumentation amplifiers. Figure 56 shows the classic 2-op-amp instrumentation amplifier with four resistors using the ADA4062-2. The key to high CMRR for this instrumentation amplifier are resistors that are well matched to both the resistive ratio and relative drift. For true difference amplification, matching of the resistor ratio is very important, where R3/R4 = R1/R2. Assuming perfectly matched resistors, the gain of the circuit is 1 + R2/R1, which is approximately 100. Tighter matching of two op amps in one package, as is the case with the ADA4062-2, offers a significant boost in performance over the 3-op-amp configuration. Overall, the circuit only requires about 330 A of supply current.
R3 10.1k R4 1M +15V R1 10.1k R2 1M +15V
IN
R1 804k
R2 804k C3 6.6nF R3 402k
1/2
VO
ADA4062-2
-VSY
C1 3.3nF
C2 3.3nF
fO = 2 R C 11
C1 = C2 = C3 2
07670-060
1
R1 = R2 = 2R3
Figure 53. Notch Filter Circuit
20 10 0 -10
1/2
ADA4062-2
V1 V2 -15V
1/2
VO
ADA4062-2
-15V
GAIN (dB)
-20 -30 -40 -50 -60 -70 100 FREQUENCY (Hz) 1k
07670-057
VO = 100(V2 - V1) TYPICAL: 0.5mV < V2 - V1< 135mV TYPICAL: -13.8V < VO < +13.5V USE MATCHED RESISTORS
Figure 56. Micropower Instrumentation Amplifier
PHASE REVERSAL
Phase reversal occurs in some amplifiers when the input commonmode voltage range is exceeded. When the voltage driving the input to these amplifiers exceeds the maximum input commonmode voltage range, the output of the amplifiers changes polarity.
-80 10
Figure 54. Notch Filter: Gain vs. Frequency
Rev. 0 | Page 14 of 20
07670-059
ADA4062-2
Most JFET input amplifiers have phase reversal if either input exceeds the input common-mode range. For the ADA4062-2, the output does not phase reverse if one or both of the inputs exceeds the input voltage range but stays below the positive supply rail and 0.5 V above the negative supply rail. With a supply voltage of 15 V, phase reversal occurs when the input voltage is a negative signal greater than -14.5 V. This is due to saturation of the input stage leading to forward biasing of the gate-drain diode. Phase reversal in ADA4062-2 can be prevented by using a Schottky diode to clamp the input terminals to each other. In the simple buffer circuit in Figure 57, D1 protects the op amp against phase reversal and R limits the input current that flows into the op amp.
+VSY
VIN
VSY = 15V
VOUT
VOLTAGE (5V/DIV)
TIME (40s/DIV)
Figure 58. No Phase Reversal
-VSY
Figure 57. Phase Reversal Solution Circuit
07670-053
IN
R D1 10k IN5711
1/2
VO
ADA4062-2
Rev. 0 | Page 15 of 20
07670-038
ADA4062-2 SCHEMATIC
VCC
OUT A/ OUT B
-IN A/ -IN B
+IN A/ +IN B
VEE
Figure 59. Simplified Schematic
Rev. 0 | Page 16 of 20
07670-062
ADA4062-2 OUTLINE DIMENSIONS
3.20 3.00 2.80
3.20 3.00 2.80 PIN 1
8
5
1
5.15 4.90 4.65
4
0.65 BSC 0.95 0.85 0.75 0.15 0.00 0.38 0.22 SEATING PLANE 1.10 MAX 8 0 0.80 0.60 0.40
0.23 0.08
COPLANARITY 0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 60. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters
5.00 (0.1968) 4.80 (0.1890)
4.00 (0.1574) 3.80 (0.1497)
8 1
5 4
6.20 (0.2441) 5.80 (0.2284)
1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE
1.75 (0.0688) 1.35 (0.0532)
0.50 (0.0196) 0.25 (0.0099) 8 0 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157)
45
0.51 (0.0201) 0.31 (0.0122)
COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 61. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)
Rev. 0 | Page 17 of 20
012407-A
ADA4062-2
ORDERING GUIDE
Model ADA4062-2ARMZ 1 ADA4062-2ARMZ-RL1 ADA4062-2ARZ1 ADA4062-2ARZ-R71 ADA4062-2ARZ-RL1 ADA4062-2BRZ1 ADA4062-2BRZ-R71 ADA4062-2BRZ-RL1
1
Temperature Range -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C -40C to +125C
Package Description 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N
Package Option RM-8 RM-8 R-8 R-8 R-8 R-8 R-8 R-8
Branding A25 A25
Z = RoHS Compliant Part.
Rev. 0 | Page 18 of 20
ADA4062-2 NOTES
Rev. 0 | Page 19 of 20
ADA4062-2 NOTES
(c)2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07670-0-10/08(0)
Rev. 0 | Page 20 of 20


▲Up To Search▲   

 
Price & Availability of ADA4062-2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X